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We study the stationary nonequilibrium states of the van Beijeren/Schulman 
model of a driven lattice gas in two dimensions. In this model, jumps are much 
faster in the direction of the driving force than orthogonal to it. Van Kampen's 
O-expansion provides a suitable description of the model in the high-tem- 
perature region and specifies the critical temperature and the spinodal curve. We 
find the rate dependence of Tc and show that independently of the jump rates 
the critical exponents of the transition are classical, except for anomalous energy 
fluctuations. We then study the stationary solution of the deterministic 
equations (zeroth-order Q-expansion). They can be obtained as trajectories of a 
dissipative dynamical system with a three-dimensional phase space. Within a 
certain temperature range below To, these equations have a kink solution whose 
asymptotic densities we identify with those of phase coexistence. They appear to 
coincide with the results of the "Maxwell construction." This provides a 
dynamical justification for the use of this construction in this nonequilibrium 
model. The relation of the Freidlin-Wentzell theory of small random pertur- 
bations of dynamical systems to the steady-state distribution below To is dis- 
cussed. 

KEY WORDS: Stationary nonequilibrium states; driven lattice gas; van 
Kampen's O-expansion; "Maxwell construction." 

1. I N T R O D U C T I O N  

Stochas t i c  la t t ice  gases  a re  wide ly  s tud ied  k ine t i c  m o d e l s  for  a va r i e ty  o f  

phys ica l  p h e n o m e n a .  I n  the i r  s imples t  p a r t i c l e - c o n s e r v i n g  v e r s i o n  

( K a w a s a k i  d y n a m i c s  in sp in  l anguage ) ,  pa r t i c les  j u m p  on  a la t t ice  

r e spec t ing  s ingle site o c c u p a n c y .  T h e i r  j u m p  ra tes  sat isfy de t a i l ed  b a l a n c e  

wi th  respec t  to  s o m e  energy ,  H.  T h e r e f o r e  the  s t a t i o n a r y  s ta tes  for  a f ixed 

n u m b e r  o f  par t ic les  h a v e  the  e q u i l i b r i u m  f o r m  Z -1  e x p [ - f l H ] .  F o r  an  
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attractive interaction the system segregates into a low- and a high-density 
phase at sufficiently low temperature. 

In Refs. 1 and 2 two of us posed the problem of how the statistical 
properties of the lattice gas are altered when jump rates are chosen in such 
a way that the stationary state(s) is no longer an equilibrium state for any 
(known) H. In particular, we considered jumps biased in a certain direc- 
tion. Physically the bias may be thought to originate from an external 
driving force, E. For  example, we may imagine that the particles are 
charged and that a uniform external electric field acts upon the system. Our 
motivation was threefold: First, we wanted to understand how the driving 
force alters, if at all, the segregation transition, similar in spirit to the 
investigation of Kawasaki and Onuki (3'4) of a binary fluid under shear. 
Second, a driven stochastic lattice gas seemed to be the simplest model, 
with spatial structure, which could give general properties of noneqilibrium 
steady states. Finally, this system is thought to model some fast ionic 
conductors. (5) 

To answer these questions we studied the driven lattice gas by means 
of a Monte Carlo simulation. (1'2) The essential observations were: 

- -  the segregation transition persists at any field strength 

- -  the ordered phase is highly anisotropic with striplike tyical con- 
figurations in the field direction 

- - t h e  critical temperature is shifted upwards as E increases; the 
critical exponents appear to be changed compared to E = 0 

the average current has a break in its slope at the critical tem- 
perature. 

These results were corroborated by more extensive runs. (~8~ In particular, 
in two dimensions the critical exponent/~, corresponding to the difference 
in density of the two phases, appears to be around 0.3: this is to be com- 
pared with the Onsager result 0.125 and the mean field value 0.5. 

To obtain an understanding of this system, van Beijeren and 
Schulman (9) consider a modified version of the driven lattice gas, where the 
jumps in the field direction are very fast compared to the jumps orthogonal 
to it and the driving field is infinite, i.e., no jumps opposite to the field. In 
this fast-rate limit the spatial dimension of the model reduces by one. 
Furthermore, fluctuations in the system are small, of the order l/N, where 
N is the column height (the fast exchange direction). Therefore the model 
comes in reach of an analytical study. The goal of this paper is a detailed 
and systematic investigation of the van Beijeren/Schulman (vBS) model. 

Three aspects, not discussed in Ref. 9, are our main interest: 

(i) In a Monte Carlo simulation one usually employs the Metropolis 
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rates as giving the largest exchange rate per time step. If the goal is the 
simulation of typical equilibrium configurations, then the choice of jump 
(or flip) rates is of no importance, as long as detailed balance is satisfied. In 
the present case, however, the steady-state distribution depends, in general, 
on the specific jump rates, since it is only defined as the stationary solution 
of a certain master equation. One hopes that certain features, e.g., the 
topology of the phase diagram and critical exponents, are independent of 
the specific rates. A check on this is provided by investigating the rate 
dependence in the vBS model. 

(ii) vBS use the Maxwell construction (=  equality of the "chemical 
potential" of the two phases) in order to determine the phase coexistence 
curve. A priori, it is not clear that this concept, familiar from equilibrium 
statistical mechanics, can also be applied to the present nonequilibrium 
situation. In fact, there is no obvious a priori way for defining the chemical 
potential. We give a dynamical method for finding the coexisting phases by 
requiring the existence of a stable kink profile with asymptotic densities 
lying on the phase coexistence curve. This is constructed numerically for 
the rates used by vBS and appears to agree (near the critical point at least) 
with the results obtained via the Maxwell construction. 

(iii) The low-temperature dynamics is complicated, as already hinted 
at in Ref. 9. We study it by means of the Freidlin Wentzell theory of small 
random perturbations of dynamical systems. A crucial role is played by the 
stationary solutions of the limiting, N ~  ~ ,  deterministic dynamics. They 
can be regarded as the trajectories of a discrete dynamical system with a 
three-dimensional phase space. This is analogous to some mean-field 
equilibrium models. ~17 21) The fixed point structure and the periodic orbits 
of this discrete dynamical system provide a certain insight into the low- 
temperature dynamics. 

1.1.  F ie ld  T h e o r e t i c  F o r m u l a t i o n  

Before going on to discuss the above topics, we note that close to the 
critical point one may hope to describe the essential properties of the 
driven lattice gas by a time-dependent Ginzburg-Landau theory. ~~ Since 
the order parameter is conserved, the Cahn-Hilliard equation, alias model 
B, is appropriate. If ~b(x, t) denotes the local order parameter of the system, 
then the equations of motion for the system without driving force are ~1~ 

0t ~b § divj = 0  (1.1) 

6H 
j = --L grad - ~  + L1/Zjra, (1.2) 

822/44/'3 -4- l 7 



538 Krug e t  al. 

Here H is the Ginzburg-Landau-Wilson free energy functional in the stan- 
dard form, 

H[~b] = fl f ddx{llgrad ~(X)[ 2 + V(~(x))} (1.3) 

with V(~)=1r(92q-g~ 4, g > 0 .  Equation (1.1) expresses the local conser- 
vation law. The right-hand side of (1.2) splits the density current j into two 
parts: a systematic part proportional to the gradient of the chemical poten- 
tial and a random part which models the fast microscopic processes. The 
latter is Gaussian and 6-correlated in space-time. L is the Onsager coef- 
ficient which in principle may depend on ~b, L > 0. The stationary solutions 
to (1.1) and (1.2) are the Gibbs measures ~exp[ - f lH(~b)+h lddx(~(X)]  
in which the average current vanishes. The driving field is taken into 
account by adding to (1.2) the term aE, where a is the conductivity, in 
general E and ~b dependent. Then (1.2) becomes 

6H 
j = --L grad -7-7, + ~E + L 1/2j r a n  (1.4) 

OO 

The stationary solutions of (1.1) together with (1.4) are now no longer 
known---except for trivial cases. 

The critical behavior of the model defined by (1.1) and (1.4) are 
studied by means of dynamical renormalization. Exploiting supersymmetry, 
Gawedski and Kupiainen (11) find an upper critical dimension 5 for 
L = const and a = ~b 2. Leung and Cardy (12) determine the scaling form of 
the two-point function and compute critical exponents in e-expansion. An 
important insight is that the ~4-term is irrelevant in the sense of renor- 
malization group for E r 0. Also, since after the first renormalization step 
the model becomes anisotropic, this should be incorporated from the 
beginning in (1.3) and (1.4). (13) 

Recently the high-temperature behavior of (1.1) and (1.4) for 
L = const, a = ~2 has been analyzed (13'x4) (cf. also Ref. 15). For dimension 
d =  i, 2 the driving force destroys the usual diffusive steady-state fluc- 
tuations. Surprisingly, for d = 1 there is a mapping to a SOS model for an 
interface with quenched random impurities defined by 

f l~ dx(t) exp l -  f dt{Jc(t)2 + V(x(t), t) } ] (1.5) 
t 

where x(t) is the position of the interface relative to a reference line and 
V(x, t) is white noise in both arguments. (16) 

The rest of the paper is organized as follows: In Sec. 2 we recall the 
lattice gas model of Ref. 2 and its fast-rate limit yielding the vBS 
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approximation. To this model we apply the O-expansion of van Kampen. 
In Sec. 3 we determine the critical point, critical exponents, and the 
spinodal for general rates. In Sec. 4 we describe a fairly well understood 
mean-field equilibrium model which we regard as prototypical for the vBS 
model, although the latter does not satisfy detailed balance, and we deter- 
mine the phase coexistence curve. Section 5 deals with the low-temperature 
dynamics. 

2. T H E  LATT ICE G A S  M O D E L  A N D  ITS Q - E X P A N S I O N  

We consider a lattice gas on a square lattice A consisting of N rows 
and M columns, M N  = ]AI. The driving field will be oriented vertically. In 
this direction periodic boundary conditions are imposed. At each lattice 
site x ~ A there is an occupation variable t/x with values 0, if the lattice site 
x is empty, 1 if it is occupied. A configuration {qxlx e A } of particles is 
denoted by t/. The energy of a configuration q is given by the usual nearest- 
neighbor Ising Hamiltonian 

H(tl) = --4Jh ~ qx'qy--4J~ ~ qxtly (2.1) 
[ x I  - -  Y l l  = 1 I x 2  - -  Y21 = 1 

x 2  = Y 2  X l  = Y l  

Jh(Jv) is the coupling for horizontal (vertical) bonds. 
The dynamics of the model are defined by specifying the rate for the 

jump of a particle to a neighboring empty lattice site. The driving field 
favors jumps in the field direction and suppresses jumps opposite to it. 
Jumps orthogonal to the field are unaffected and satisfy the usual detailed 
balance condition. We denote by ce(x, y, it) the exchange rate for the 
occupations at sites x and y when the configuration is t/. E indicates the 
strength of the driving field (-= bias). Physically it is rather natural to 
impose local detailed balance [2] in the form 

ce (x ,  y ,  tl) = ce (x ,  y,  qxy) exp[-fl(H(tl xy) - H( t l ) )  

+ E. ( x -  Y)(~x- ~y)] (2.2) 

Here fl is the inverse temperature and qxy denotes the configuration q with 
occupations at x and y interchanged. In the exponent the work done by the 
driving force during the jump is added to the energy difference for the jump 
and /~ is absorbed in E. To put it differently: locally the driving force 
behaves as (minus) the gradient of a linear potential. 

The master equation describing the time evolution of the probability 
distribution Pt(~t) on configuration space has the form 
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d 
dt P,(q) = 2 

I x -  yl --1 
[cAx,  y, t/~) p,(n~) - c~(x, y, ~) p,(t/)] 

=-Lep,(q) (2.3) 

For E = 0  the stationary solutions of (2.3) are the equilibrium distributions 
at a given average density p; p ~ exp[--f lH(q)]  6(~,x t/x--NMp). Also for 
E C0, if the system had "rigid walls" perpendicular to E, then the 
stationary solution is exp[- /~H(q)  + Zx ( E ' x )  t/x ] 6(~x tlx- NMp). This 
is, however, not the case if we have periodic boundary conditions in the 
direction of E. The stationary solution of (2.3) now carries a current and 
does not satisfy detailed balance. In fact, the stationary distribution is 
unknown, and this is in fact the major difficulty in our problem. 

The basic idea of vBS is to postulate jumps in the field direction to be 
much more frequent than in the direction orthogonal to it and to exploit 
the resulting separation of time scales. We follow them by setting 

cE(x, y, ~) 

= ~Fil(~ll(fl(H(t/xy)- H ( q ) ) ) -  E(x2 - y2)(t /x-  t/y)), x -  y = +e2 (2.4) 
[ f ' • 1 7 7  xy)  - -  H ( t / ) ) ) ,  x - -  y = + e l  

and cz(x, y, t / )=0  otherwise, where el(e2) is the unit vector along the 
horizontal (vertical) direction and F• ) sets the time scale for horizontal 
(vertical) jumps. By (2.2) the functions ~btr and q~l have to satisfy 

~b(2) = e -  ~b( -2)  (2.5) 

In Ref. 2 Metropolis rates are used corresponding to Fit=F• 
~ll=q~• and ~b().)=l for 2 < 0 ,  ~b(~.)=e ~ for )~>~0. In Ref. 7 
Metropolis rates are used with the ratio FJF• varying between 1 and 80. 

In order to separate the time scales, we keep F• fixed, say F• = 1, and 
let Ftl ~ ~ .  For every horizontal jump there are then many jumps in the 
field direction and therefore between any two horizontal jumps the system 
equilibrates in a steady state of (2.3) with F• = 0. Let nj be the number of 
particles in the j t h  column, j =  1,..., M, n j=0 ,  1,..., N and n =  (nl,..., nM). 
Since for F• = 0 horizontal jumps are forbidden, for each fixed vector n 
there is a unique steady-state solution to (2.3) satis~ing 

LEw.(t/) = 0, F• = 0 (2.6) 

On the slow time scale (2.3) reduces as Fit ~ ~ to a "coarse grained" 
master equation governing the distribution of n, 

d pt(n) = ~ [-c(N)(n t, n) pt(n') -- c(U)(n, n') p,(n)] (2.7) 
n '  
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where the jump rates are defined as 

c(N)(n ', n) = N <  qb• xy) - H(r/))) > (n) (2.8) 

with ( ' ) ( n )  denoting the average with respect to w.(r/). 
Unfortunately, ( . ) ( n )  is known explicitly only for particular rates. 

Following vBS we assume that any jump opposite to E is forbidden and a 
jump ~n the direction of E is performed provided the hard core exclusion is 
not violated, i.e., 

~Fl:/x(1 -- t/,), x - y =  _+e2 (2.9) 
e~(x ,  y, q) = (fb• _ H(q))) ,  x - y = +el  

and ca(x ,  y, q ) = 0  otherwise. Then ( . ) ( n )  is given simply by randomly 
distributing the particles in each column. Notice that this is equivalent to 
putting ~blp = const, i.e., exchanges in the vertical direction behave as if the 
system was at an infinite temperature. The effect of the strong field is to 
wash out all correlations within each column. This renders c(U)(n ', n) in 
(2.8) explicitly computable and so defines the vBS model for general jump 
rates; vBS set ~,b• e x p [ - : . / 2 ]  for computatinal convenience. 

The goal of our paper is to analyze the steady-state distribution of the 
master equation (2.7) for a large system, M, N ~  ~ .  Since, except for 
special cases, (2.7) does not satisfy detailed balance, we have to rely on 
approximate methods. As a crucial simplification we note that for N--+ 
fluctuations are suppressed. Therefore we consider the limit N ~  ac for 
fixed M. 

For large N the natural variables are n jN .  The rates (2.8) imply then 
that tyically these densities have N changes of size 1IN during a unit time 
interval. This is precisely the setup of the ~-expansion (:~ with the 
column height N playing the role of the system size parameter s We set 

1 
n:(t) = p(N)(t) + N-1/2~(jN)(t) (2.10) 

p}N)(t) is the average density of the j t h  column at time t, 0 ~< p}U)(t) ~< 1, 
and N-I/2~}u)(t) are small fluctuations around the average density. Then in 
the limit N--+ ~ ,  p ( N ) ( t ) ~ & ( t )  and the local densities are governed by 
conservation type deterministic equations 

d 
pj(t) + J:(p(t)) - Sj ](p(t)) = 0 (2.11) 

The current, Jj(p), between columns j and j +  t is given as the number of 
jumps (per unit time) from j to j +  1 minus those from j +  1 to j, 

J j ( p ) = R ( p j  ~,Pj, P j + ~ , P j + 2 ) - R ( p j + z ,  Pi+I ,Pj ,  P j - I )  (2.12) 
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Here 

R(pj  1, Pj, P j + I ,  P j+2)  = lim (O• (n) (2.13) 
N ~  

with x 2 = y 2 ,  Xl=j, y l = j +  1, qx = 1, ~]y ~---0. 
In the limit N ~  ~ the fluctuations around the mean value become 

Gaussian, ~}N)(t)~ ~j(t), and are governed by the linear, time-dependent 
Langevin equation 

M 
d ~](t) = ~ Lji(p(t)) ~( t )  + Wj(t) (2.14) 

i=1 

The matrix Lij is obtained by linearizing (2.11) around the solution p(t). 
The fluctuating forces, Wj, are Gaussian with zero mean and covariance 

(Wi(t) W/(t') ) = 6 ( t -  t') g#(p(t)) (2.15) 

The covariance g is the matrix of second jump moments for (2.7). It has the 
structure of a discrete Laplacian and is given by 

with 

gij(P)=6ij(ai(p)+ai l(p))--6ij ~ai(p)--6o.+~ai_~(p ) (2.16) 

aj(p)=R(& 1,&,&+l,&+2)+R(&+2, pj+l,pj, pj_l) (2.17) 

Since we are interested in the steady state for (2.7), we would like to 
take the limit t ~  oo in (2.11) and (2.14). As emphasized by van Kampen 
the linear Gaussian approximation is meaningful uniformly in time only if 
the solutions to (2.11) all tend to a common fixed point as t ~  ~ .  This 
condition breaks down at low temperatures. We will then have to use the 
theory of large deviations to extract some information on the steady state 
as N ~ .  

At the boundaries, j =  1 and j=  M - 1 ,  the currents Jj and the fluc- 
tuation strengths g~(p) are modified through the closed end boundary con- 
ditions. Computationally this is cumbersome. Therefore from now on we 
consider the infinite system, - ~ < j < ~ ,  which we approximate through 
a finite system with periodic boundary conditions. This means 
-M<~j<~M and P M + I = P - - M , ~ M + I = ~  M" The total number of 
columns is then 2M + 1. We expect that in general our order of limits, first 
N ~  oo then M ~  0% could be interchanged. 
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3. CRITICAL POINT, SPINODAL LINE, AND CRITICAL 
EXPONENTS 

In the high-temperature regime, fl small, the homogeneous states 
Pi - P, Jj = 0 are the only stationary solutions of the deterministic evolution 
equation (2.11) with periodic boundary conditions. They are all stable. For  
given p the stationary distribution of the reduced master equation (2.7) for 
large N is then a Gaussian centered at the homogeneous state with a 
relative width of the order N 1/2. Its covariance is given by the stationary 
solution of (2.14). To determine it we exploit the translation invariance of 
the homogeneous state and introduce the fluctuation modes 

M 

~k(t)  = 2 eikn~n(t) (3.1)  
n - -  M 

where the wave number k is in the first Brillouin zone, - rc  ~< k ~< r~. In the 
limit M ~ ~ ,  k becomes a continuous variable. The Langevin equations 
(2.14) decouple as 

d ~k(t) = L(k) ~k(t) + W(k, t) (3.2) 
dt 

Here 

where 

L(k) = -R23 - (R14 - R23) cos k + R14 cos  2k 

(l~(k, t) ff'(k', t ' ) )= 6 ( k -  k ' ) 6 ( t -  t') g(k) 

~(k) = 2D(1 - cos k) 

(3.3) 

D(p) = R(p, p, p, p) (3.4) 

R~ -~ixiR--~xj R x=o' i, j =  l ..... 4 

With ( r 1 6 2  G(i- j ) ,  the steady-state covariance, the structure function 
is given by 

S(k) = ~ ei'kG(n) (3.5) 
n 

and therefore 

~(k) D 
S(k) - 2L(k) - -  R23 -4- R14 (1 + 2 cos k) (3.6) 
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Due to the randomness of the particle distribution in each column, S is 
independent of the vertical component of the wave vector. 

The homogeneous state with a given density p may lose its stability as 
the temperature T=fl 1 decreases and reaches some critical value Ts(p), 
which, in the usual equilibrium mean field terminology, we call the 
spinodal temperature. This instability is connected with critical fluctuations 
and a diverging horizontal correlation length. Correspondingly the struc- 
ture function S(k) diverges at a certain wave number kc characterizing the 
critical fluctuations. For attractive intercolumn (Jh > 0) the instability will 
be driven by spatially homogeneous fluctuations, kc = 0, while for repulsive 
interactions ( Jh<0)  the critical fluctuations are staggered, kc=Tr. The 
spinodal temperature Ts(p) is thus determined by 

R23 + 3R14 = 0, for Jh > 0 (3.7a) 

R23-- R14 = 0, for Jh < 0 (3.7b) 

and R14 vanishes for Jh = 0. 
By the particle-hole symmetry of the lattice gas, which is preserved by 

our dynamics, (2) the instability curve Ts(p) in the p-T plane is symmetric 
around p = 1 and takes its maximum at p = 1. Hence Pc = �89 Tc = Ts(�89 is 
the critical point of the system. Its properties are studied in this section. 

The occurence of a spinodal depends on the choice of the rate function 
~bi. For attractive, isotropic couplings, Jh = J r  = J >  0, there is a transition 
for all ~b., whereas for repulsive couplings, Jh=Jo <0,  the transition is 
completely suppressed. To discuss mixed couplings we assume a monotone 
decreasing rate function ~b• normalized as ~b• 1 and having a limiting 
value 

e=  lim ~b• (3.8) 
x ~  o o  

1 <~ e ~< oo. Then for - J h  = J~ > 0 (resp., Jh = 0, Jv > 0), a phase transition 
exists only if e > ~ (resp., e > 9).(24) 

To understand the rate dependence of the critical temperature in the 
attractive isotropic case we calculate To for four different rate functions ~b• 
as given in the first column of Table I. We note that the rate functions and 
their corresponding critical temperatures To are ordered increasingly. 
Furthermore, in general, Tc = l/tic satisfies 

0.14 ~</3cJ~< 0.43 (3.9) 

(see Ref. 24). The equilibrium critical temperature of the two-dimensional 
lattice gas is /~oJ= 0.44 according to Onsager. Thus we find a rise in the 
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Table I. Cr i t i ca l  Temperature for Attractive Isotropic 
Coup l ings  

Rate  funct ion 4(x)  e [cf. (3.8)] f l j =  J/kT~ 
F 
~ e  x x ~ 0 

~o(X) x ~< 0 1 0.43 

2 
~ l ( x )  = 2 0.25 

1 + e  ~' 

~2(X)  = e x/2 m 0.20 

~ ( x ) =  {~ 1>0 x~<0 oo 0.15 

critical temperature, as compared to equilibrium, for any realization of our 
model. The same trend is found in the numerical simulations. (2'7'8) We have 
f l c J~  0.32. (2) It thus appears that the fast-rate limit lowers the critical tem- 
perature. This is further confirmed by a Monte Carlo simulation for 
7 = Fll /Fz = 1, 5, 20, and 80 on a 50 x 50 lattice for which the critical tem- 
perature is found to decrease as a function of ~/.(7) 

In fact, for higher dimension (d~>3), the fast-rate limit with 
Metropolis rates gives critical temperatures lower than the corresponding 
equilibrium ones; while, with vBS rates, they are higher. The d-dependences 
of fit's are given by 

4flMj2d~2(4d53) e 4~,J(2d--2--n) 1 ( 3 . 1 0 )  d - ( l  + d )  e 
24d  4 

n = O  
\ tt / 

and 

(2d+  1) tanh(f lvaSj)= 1 (3.11) 

As a common trend, Tc grows with d in both cases and asymptotically 
tends to the mean field behavior, i.e., fl~ ~ 1/2d, as d-~ oe. 

We proceed to determine the critical exponents in the case of attrac- 
tive interactions. The left-hand side of (3.7a), evaluated at Pc = �89 has a 
nonvanishing derivative with respect to temperature. The divergence of the 
forward scattering cross section, S(0), at the critical point is therefore given 
by 

S ( k ) ~ ] T - T c 1 - 1  for k = O , T ~ T  c 
(3.12) 

S ( k ) ~ - k  -2 for T =  Tc, k - - O  
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The exponents T and q thus take on their classical values V = 1 and q = 0. 
The pair correlation function decays exponentially as 

G(n) = G(0) e - I"1/r (3.13) 

on a length scale ~ -~ ( ( T -  Tc)/Tc) - m  as T approaches To. Thus we find 
the classical value v = �89 for the exponent of the correlation length. The 
prefactor 

G(0) = ( ~ )  (3.14) 

in (3.13) diverges also as ( ( T -  Tr162 -m. Since ( ~ 2 ) =  1/N 
( (n~)  - (nj)2),  this implies that in the limit N-~  ~ the density fluctuations 
in each column diverge at To. 

The critical exponent ~ related to the specific heat has no unique 
definition in the present nonequilibrium situation. In equilibrium Cv can be 
expressed in a variety of ways such as the derivative of the internal energy 
with respect to temperature, the second derivative of the free energy or 
energy fluctuations, and so forth. In nonequilibrium, these different 
definitions do not have to coincide. If we adopt the fluctuation-response 
relation, then 

1 
Cv =ksT 2 IAI -~ ( (H  2 ) - ( H )  2) (3.15) 

( H )  and ( H  2) are calculated from (2.1) by first averaging the site 
occupation variable qx over the uniform distribution with fixed n and 
then averaging n over the Gaussian distribution with covariance (3.6). 
We find that Cv diverges as [ T - T c [  -1 at the critical oint. On the other 
hand, the average energy shows no temperature dependence above 
To. (9) There is, however, a quasi-one-dimensional correction term, 
~-N I((T-Tr -3/2, to C~ corresponding to a similar contribution, 
~-N ~((T-Tc)/Tr ~/2, to the average energy. For  the vBS model the 
average current, ( J ) ,  is proportional to ( H ) .  Therefore d(J) /dT has a 
jump at Tc in accordance with the numerical simulations. (2'6) 

Finally, let us determine the dynamical exponent z of our model. Each 
fluctuation mode ~k(t) has a relaxation time r k = - L ( k )  -1. The mode 
connected with the critical wave number k c slows down as 

r l ,~- lk-kd ~ at T=To, k ~ k ~  (3.16) 

Therefore 
z = 4  for J h > 0  

(3.17) 
z = 2  for J h < 0  



Rate L imi t  of Driven Lattice Gas 547 

For attractive horizontal interaction the order parameter is conserved, 
which leads to z = 4, whereas the staggered density distribution emerging in 
the repulsive case corresponds to a nonconserved order parameter. 
Equation (3.17) agrees with the classical van Hove theory of critical 
slowing down. For Jh = 0 the structure function S(k) is independent of k, 
which means that all modes lose their stability simultaneously. There is 
then no critical wave number kc and no critical slowing down in the sense 
of (3.16). 

4. PHASE COEXISTENCE 

Having discussed the high-temperature regie and the critical point, we 
would like to understand the low-temperature behavior of the driven lattice 
gas. From now on only attractive isotropic couplings, J >  0, are considered. 
As observed in Monte Carlo simulations, the system segregates into a low- 
and a high-density phase. Our first goal is to determine this phase 
coexistence curve for the vBS model. 

As noted in Ref. 9, for the jum rates ~b• = ~b2 and for the couplings 
J r > 0 ,  J h = 0  the steady-state distribution, and therefore the phase 
coexistence curve, is obtainable exactly. Since our analysis of the isotropic 
case is motivated by this particular solution, we first describe its structure 
for large N. The steady-state distribution is approximately given by 

p(N)(n)=Z-lexp[-N.F(p)](~ pj-(2M+l)p (4.1) 
j M 

with pj--n//N, where F(p), which can be thought of as a "free energy" 
functional, has the form 

M 

F(p)= ~ f(pj) (4.2) 
j - -  M 

with 

f ( p ) = 2  d21og((2exp[-23J.]+ l-2)/(1-2) 

xexp[-2flJv]+2))+plogp+(1-p)log(1-p) (4.3) 

Furthermore the current J/in (2.t2) can be written in the form 

Jj(p)=-Lj(p) ( aO--~jF+ 1 O Fj) (4.4) 
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with strictly positive Onsager coefficients Lj(p). Therefore Jj(o)=O is 
equivalent to 

OF OF 
- C ( 4 . 5 )  c~pj+ a c3pj 

independent of j, j=-M, . . . ,  M, which defines precisely the stationary 
points of F under the constraint Z/Pj = (2M + 1 ) p. Thus time-independent 
solutions of (2.11) with zero current coincide with stationary oints of F 
under the constraint Zj Pj = (2M + 1) p. 

The structural similarity with eqilibrium mean field models is quite 
apparent. We want to introduce briefly one such model because it will be 
useful for the understanding of the low-temperature static solutions, cf. 
Sec. 5. As in the vBS model, particles jump on a (2M + 1) x N square lat- 
tice with periodic boundary conditions. The Hamiltonian is of mean field 
type 

H = - - 4 J  1 .  ~ (njnj+ l +n}) (4.6) 
j = - - M  

with nj the number of particles in the j th  column, 0 ~< n/<<. N, n_M = nM+l. 
The jumps are assumed to satisfy detailed balance with respect to H. Then, 
independently of the jump rates, the steady-state distribution is 
Z -1 exp[- /3H] 3 ( Z ~ _ M n j - N ( 2 M +  1)p) which for large N is of the 
form (4.3) with the free energy functional 

M 

F~q(O)= -4flJ ~ (pjpj+, +p}) 
j = - - M  

M 

(pj log pj + (1 - p/) log(1 -- pj)) (4.7) 
j =  M 

pM+l=p_M. As in the vBS model, the time-dependent densities 
p ( u ) ( t )  = nj(t)/N become deterministic for large N and are governed by 

d 
pj(t) + Jj(p(t)) - J/ ,(O(t)) = 0 (4.8) 

where Jj is of the form (4.4) with F replaced by Feq and with Onsager coef- 
ficients depending on the specific choice of the jump rates. 

We return to the driven lattice gas for general jump rates and isotropic 
couplings. In analogy to the cases just discussed we assume that the steady 
state for large N is of the form 

p(N)(n)=Z-~exp[-NF(p)]g) p j - ( 2 M + l ) p  (4.9) 
j M 
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with a suitable "free energy" F which is not known explicitly. Since detailed 
balance is not satisfied, there is no reason to believe that F is related to the 
current by (4.4). Still for small noise, i.e., large N, the system will spend a 
long time near stationary dynamically stable solutions of (2.11) and these 
should be reflected as local minima of F. Thus an investigation of the 
deterministic dynamics yield indirectly some information on F. This will be 
pursued in Sec. 5. 

Here we determine the phase coexistence curve for M--* oo by a purely 
static argument analogous to that used in Ref. 9. Assuming the form (4.9) 
we define a function, #, by 

F (4.10) 

where by symmetry the differentiation could be with respect to any &. 
Now, for p in the stable regime, 

a f l / l ( p ) = ~  02 F 
c~p c3pj Opo {pro=p} 

=S-'(O)(p)=(R23(p)+ 3RI4(p))/D(p) (4.t l)  

The second equality follows from considering the (small) Gaussian fluc- 
tuations about the uniform state. From (4.9) these are obtained as 

02 F 
{(~i~j)} - 1 -  (4.12) 

0pi c3pj {pro= a} 

where {- } ~ denotes the inverse of the covariance matrix which we know 
from the ~2-expansion, cf. (3.5), (3.6). Solving (4.11) for/a as a function of 
p, we find that # has a form well known from the van der Waals gas. Below 
To, when analytically continued inside the spinodal, # has a double loop 
structure. Evaluating then F(p) for p~=p, we see that it has a double 
minimum for T <  To, symmetric around p�89 The phase coexistence curve is 
then identified with these minima of F, obtained with uniform &'s 
according to (4.9). This is of course equivalent to the Maxwell construction 
in equilibrium. 

In Figure 1 we plot the coexistence and spinodal curves for the 
horizontal rate functions ~b o and 02 of Table I. A typical feature of the 
phase diagram for rate functions characterized by ~ < o9 [cf. (3.8)] is that 
both the coexistence and the spinodal curves hit the T =  0 axis at values of 
p different from 0 and 1. Consequently, if the lattice gas is sufficiently dilute 
(or dense), the homogeneous state remains stable all the way to zero 



kT/J 

Fig. 1. 

0 1 P 

550 Krug e t  al. 

Phase coexistence and sinodal curves in the case of isotropic, attractive couplings for 
the vBS rates (upper curves) and for the Metropolis rates (lower curves). 

temperature for these rates. (This does not happen of course for the 
equilibrium system, E--0.)  

What has been done here, beyond the explicit assumption of the N 
dependence of p(U)(n) in (4.9), is: 

(i) Assume that for large M we can let k ~ 0 in (3.6) to obtain the 
last equality in (4.11). This is related to the equivalence of the canonical 
and grand canonical ensembles which can be proven for equilibrium. We 
implicitly assumed this equivalence in the analysis (4.9)-(4.12), since in 
fact F of (4.9) is not unique with respect to addition of an arbitrary 
function OM(~ M M Pj)" The implicit physical assumption is that distant 
columns should not be coupled directly through p(U)(n) which translates 
into assuming that ~ t  can only be linear in its argument. [Of course we 
also assume that F is well behaved as, for example, in (4.7).] 

(ii) Assume that the covariance of small fluctuations about an 
initially uniform state, given by the f2-expansion, is meaningful for the 
description of the stationary state inside the spinodal where in fact the 
uniform state is unstable. Put alternatively, this means that S 1(0) can be 
meaningfully continued inside the spinodal to obtain global information 
about F. The coexistence curve which is outside the spinodal curve then 
marks the region, according to this construction, where the uniform state is 
no longer stable against large deviations, i.e., against splitting into two 
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phases. Thus, a posteriori,  we are not justified in using the O-expansion 
even in this region. So why should this construction have any validity for 
describing the large N behavior of stationary solutions of the master 
equation (2.7)? 

One possible justification is based on the observation that for 
equilibrium systems, such as the model (4.6), the Maxwell construction has 
also a dynamical meaning. We fix a temperature T below Tc and look for a 
stationary, zero current, and dynamically stable solution pj to (4.8) such 
that 

lim pj=p+_ (4.13) 
j ~  § 

and such that pj increases monotonically. There exists, up to translations, 
only one such kink solution, and the asymptotic densities, p + and p _ ,  are 
exactly on the coexistence curve, cf. Sec. 5.4. Physically this solution 
corresponds to the segregation into two phases. If the Maxwell construc- 
tion is to be meaningful also in our nonequilibrium context, then its result 
has to agree with the dynamical determination of the phase coexistence 
curve. Unfortunately, we could not find the kink solution to (2.11) 
analytically. For  the particular case of the rates ~b2 we obtained the kink 
solutions numerically. Their construction will be explained in the following 
section. Within some temperature interval below T c, their asymptotic den- 
sities p + and p_  lie on the phase coexistence curve as obtained from the 
Maxwell construction, cf. Table III.  Therefore it appears that the Maxwell 

Table II. Numerical  Construct ion of the Kink Solut ion ~ 

K c - K  
r = K ~  N1/2 2pmax -- 1 2 p p  h - -  1 2ps -- 1 

5 x 10 4 31.0 0 .0395 0 .0395 0 .0228 

2.5 x 10 -3  13.9 0 .0882 0 .0882 0 .0510 

5 x 10 -3  9.8 0 .1244 0 .1244 0 .0720 

0.01 7.0 0 .1752 0 .1752 0 A 0 1 6  

0.024 4.4 0.2733 0.2733 0 .1595 

0.09 2.2 0 .5102 0 .5127 0 .3084 

0.17 - -  0 .6412 0 .6705 0 .4184 

0.33 - -  0 .6763 0.8711 0 .5955 

0,5 - -  0.6931 0 .9666 0 .7372 

"Columns: (1) Reduced temperature; K defined by (5.11). (2) Half width of kink in units of 
the lattice spacing. (3) Maximal density of kink, cf. Sec. 5.5. (4) Phase coexistence curve as 
calculated from (4.11). (5) Spinodal as calculated from (5.20). 
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construction is the correct procedure also for the stationary distribution of 
(2.7) in the limit N ~  oe. To some extent this justifies also our ansatz (4.9). 

We are now in a position to determine the critical exponents/? and 6 
related to the order parameter p -  po. In the vicinity of the critical point, 
S-1(0)  is of the form 

S-I(O)  = A + B(p - -  p c )  2 (4.14) 

A - = A o ( T - T o ) ;  Ao, B > 0 .  Integrating twice with respect to p yields the 
free energy per site 

f (P)  = f o  + 1A(p - P c )  2 +~2  B(p -- pc) 4 (4.15) 

which has the form of the conventional Landau free energy. The critical 
exponents thus take on their classical values/~ = l,  6 = 3. 

From S(k) we can also determine a surface tension. In equilibrium the 
Ginzburg-Landau free energy functional is (23) 

Below To, F is minimized by the usual kink profile 

(p(x) - 0o) = ( - 3 A / B )  m tanh -~-~ x (4.17) 

where the interface position is arbitrarily fixed at x =0.  Equation (4.17) 
shows that the width of the interface diverges as ( ( T o -  T)/To) -1/2 at the 
critical point. The surface tension a, which coincides with the surface part 
of the free energy in this one-dimensional case, is obtained by evaluating 
(4.16) at the stationary profile (4.17). This yields 

a = (x/2/3B) ~1/2A3/2 (4.18) 

To determine the surface tension in our model, we have to find an 
expression for x. In mean field approximation the static fluctuations in the 
homogeneous state of (4.16) are given by the second derivative of F at the 
corresponding density and therefore 

1 
S(k) =f , , (p )  + x(p) k2 (4.19) 

We compare with (3.6). The k = 0 contribution agrees by construction. It is 
therefore tempting to identify the term of order k 2 with ~c. This yields 

to(p) = - R ~4(p )/ D(p ) (4.20) 

~c is strictly positive for all T and a ~ (To - T) 3/2 as in mean field. 
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5. T H E  A S S O C I A T E D  D I S C R E T E  D Y N A M I C A L  S Y S T E M  

As a next step we want to determine stationary, nonhomogeneous 
solutions of (2.11). We are interested in them for several reasons. First, as 
already mentioned, there should be among them dynamically stable kink 
solutions with asymptotic densities on the phase coexistence curve. These 
will hopefully coincide with those obtained from the Maxwell construction 
used before. Second, as explained in Sec. 4, dynamically stable, zero- 
current solutions should correspond to local minima of F, cf. (4.9). 
Therefore it should be possible to identify these solutions as metastable/ 
stable configurations of the system. Such long-lived configurations have 
been observed in Monte Carlo simulations/2'7) This information about 
inhomogeneous stationary states is clearly not obtainable via the methods 
used for determining F(p)I p, p in the preceding section. If we could identify 
all stationary, dynamically stable solutions of (2.11), we would have a tool 
to go beyond the O-expansion and to understand, at least in principle, the 
long time dynamics and the stationary distribution for large N also in the 
low-temperature regime. 

Let us fix some finite M and the temperature T of the system. We label 
the stationary, dynamically stable solutions of (2.11) as {pz, l =  1,..., L}. We 
assume that (2.11) has an attracting set of a simple structure. To each Pt 
there is a basin of attraction, Ft, and t.JzFz exhausts the phase space 
[0, 1 ]M up to hypersurfaces of codimension one. n( t ) /N  as governed by the 
master equation (2.7) is deterministic with a small noise of order N-1/2. We 
picture then its dynamics in the following way: n( t ) /N  spends a long time 
near a particular stationary solution, say pz. The fluctuations around p~ are 
governed by a Langevin equation of the form (2.14). Through an unlikely 
fluctuation ( - l a r g e  deviation) n( t ) /N  jumps to some other stationary 
solution, say pz, etc. The theory of Freidlin and Wentzell on sall random 
perturbations of dynaical systems (26) determines the transition rates 

K(I, 1') = e -NV(l't') (5.1) 

from the stationary configuration pz to the stationary configuration Pc. For 
the equilibrium model of Sec. 4, V(l, l') is related to the minimal free 
energy barrier between Pl and Pc. If detailed balance is not satisfied, V(I, l') 
is obtained as the solution of some complicated variational problem. Let 
p(l)  denote the stationary distribution for the master equation with the 
rates K(l, l'). For large N it is of the form 

p(l)  = Z ' e x p [ - N f ( l ) ]  (5.2) 

p(l)  is then the weight of the basin of attraction Fz with respect to the 
stationary distribution p(X) of (2.7). p(N) close to Pt is approximately 

822/44/3-4-18 
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Gaussian with a covariance determined by a Langevin equation as in the 
homogeneous high-temperature case discussed before, f ( l ) =  F(pt) with F of 
(4.9) is the "free energy" of the configuration Pt. 

Our analysis of the stationary solutions to (2.11) is rather modest. We 
obtain periodic solutions and discuss their stability. The kink solution is 
found numerically. For 8 columns (M = 8) we carry through approximately 
the Freidlin-Wentzell theory and determine the jump rates K(/, l') and the 
free energies f ( l ) .  

5.1. The Discrete Mapping  

The stationary, zero-current solutions of (2.1 1) can be obtained as the 
trajectories of a discrete dynamical system. We require the current (2.12) to 
vanish, which yields 

R ( p j _ I ,  pj, P:+l,  Pj+2)= R(pj+z, Pj+I, Pj, Pj 1) (5.3) 

For the rate function ~b• ~bz(X)= e x/Z these recurrence relations take 
a particularly convenient form. We simplify them further by introducing 
the variables 

aj = (pj + b(1 - pj))/bpj + 1 - pj) 
(5.4) 

b = e  213J 

and only consider the case Jh = Jv = J >  0. In terms of the afs, the con- 
dition of zero current reads then 

a j = G ( a j _ 3 ,  aj_2, a j_ l )  

yZ(y _ b)(1 - bz) (5.5) 
G(x, y, z) = x z2(z _ b)(1 - by) 

This is equivalent to the trajectories of the discrete map 

i?(zl, z2, z3)= (z2, z3, G(zl ,  z2, z3)) (5.6) 

The physical domain in z-space is restricted by b ~< z i ~< b-1. The nonlinear 
maping T does not preserve volume, det(c3if'/?z) ~a 1 except for some specific 
values of z. The dynamical system (5.6) is reversible in the sense that 

aj = G(a j+  3, aj+ 2, aj+ 1) (5.7) 

for any trajectory {aj} satisfying (5.5). We are thus dealing with a non- 
Hamiltonian, reversible dynamical system similar to the one considered in 
Ref. 21 in the context of classical spin chains. 
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5.2. Fixed Points 

The general structure of T implies that any fixed point must be located 
on the diagonal Zl = z2 = z3. Indeed, the diagonal represents a whole line of 
fixed points, corresponding to the homogeneous stationary solutions of 
(2.11). The character of the fixed points is determined by the sinodal curve 
of the lattice gas. Consider the linearization DTI~ of i? at the fixed point 
zi = c~, i = 1, 2, 3, where c~ = c~(p) is related to the density p of the associated 
homogeneous state by (5.4). Dif'] ~ is volume preserving, det(Dif'] ~)= 1. One 
of its eigenvalues, denoted by 2o, is always equal to unity, with the 
corresponding eigenvector pointing along the diagonal. This reflects the 
marginal homogeneous (k = 0) fluctuation ode in (3.2). The remaining two 
eigenvalues 2+ and 2 must then satisfy 

2 + . 2  = 1  (5.8) 

which admits the following four cases: 

(i) 2+ = 2_ = 1 (parabolic) 

(ii) 2 + , 2  e N ; 2 + > 2 _ > 0  (hyperbolic) 

(iii) 2+, 2 e N; 2+ < 2_ < 0 (hyperbolic with reflection) 

(iv) 2_+ = e  -+i~ O e ( 0 ,  2~) (elliptic) (5.9) 

For a given temperature T, the fixed point {z i -  c~(p)} is elliptic if p lies in 
the spinodal interval, hyperbolic if p lies outside, and parabolic if p is on 
the spinodal. 

This indicates a remarkable connection between the notions of 
stability in the two distinct dynamical systems (2.11) and (5.6). If p lies 
inside (outside) the spinodal interval, the homogeneous solution to (2.11) 
with density p is dynamically unstable (stable), whereas the corresponding 
fixed point of if" is elliptic (hyperbolic) and therefore stable (unstable). This 
relationship is readily generalized to the n-cycles of (5.6), i.e., to trajectories 
with period n. For a detailed discussion of the general case we refer the 
reader to Ref. 20. Their arguments apply to our model in a very similar 
way. 

The fact that, generally speaking, configurations of physical interest 
correspond to unstable trajectories of the associated discrete dynamical 
system has been commonly recognized. As a consequence, the actual 
location of such trajectories poses great numerical difficulties. (17) We 
therefore focus our attention on simple, small-period cycles of the discrete 
dynamical system, which are accessible to analytic calculations and which 
will provide us already with considerable insight into the low-temperature 
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the overall picture to be 
diversity of configurations 

5.3. Periodic Trajectories 

Cycles with small periods (n = 3, 4, 6, 8) are obtained analytically from 
the recursion relation (5.5) by taking an appropriate ansatz for the trajec- 
tory. We note that the particle hole transformation p j ~  1 - p j  of the 
column densities pj corresponds to a s ~ a f  -1 in the variables of (5.4). Thus a 
4-cycle {aj} with the corresponding configuration {pj} being symmetric 
with respect to the critical density Pc = �89 is of the form 

{aj}=(...,c~,c~,:~ 1, c~ 1, e,~,~-1,...) (5.10) 

Inserting this into (5.5) yields a nonlinear equation for ~, which develops a 
nontrivial solution (~#  1) below a characteristic temperature T(4)< To, 
where the superscrit denotes the periodicity of the cycle. We introduce the 
temperature parameter 

K =  cot h 3 J  (5.11) 

which is unity at T=  0 and increases monotonically with T. On its scale the 
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Fig. 2. M a x i m a l  dens i ty  versus  t empera tu re  for so lu t ions  wi th  per iods  n = 3, 4, 6, 8. These 
so lu t ions  are dynamica l l y  s table  only  in be tween the sp inoda l  and  phase  coexis tence curves. 
The in tersec t ions  wi th  p = Pc = �89 accumula t e  as 1/n 2 at Kr = 5. 
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critical temperature is located at Kc = 5. Then K (4) = 3, and for K <  K (4) the 
configuration corresponding to (5.9) is given by 

{pj-pc} =�89 .... v, v, - v ,  - v ,  v, v,...) 

V2 = (V(4)) 2 = K2 ( K  ( 4 ) -  K )  (5.12) 
( 3 K -  1) 

Similarly a 3-cycle emerges at K (3 )=  2, with the corresponding con- 
figuation given by 

{pj-pc} - '  -v,...) - - ~ ( . . . ,  V~ V, --- V, V, V, 
(5.13) 

V2 : (1)(3))2 : :  K ( K ( 3 )  K) 

For n = 6  and n = 8  the nontrivial n-cycles emerge at Kr and 
K (8)= 3 + xf2, respectively. The corresponding configurations do not have 
the simple structure as in (5.11) and (5.12). Qualitatively, they look like the 
period four configuration (5.11), i.e., they consist of a sequence of kinks 
and antikinks, each extending over n/2 lattice spacings (cf. Fig. 4). 

For each of these n-cycles there is a simple relationship between the 
characteristic temperature K r and the eigenvalues 2_+ of the "critical" fixed 
point {zi = 1 }, corresponding to the homogeneous state with critical den- 
sity Pc = �89 Below Kc, these eigenvalues are located on the unit circle. The 
angle O introduced in (5.9) is given by 

O(K) = arc cos ( K @ )  (5.14) 

for K <  Kc; O(Kc)= 0. Evaluating this expression at the characteristic tem- 
perature K (n) yields 

27~ 
O(K~"~) = - -  (5.15) 

n 

for n = 3, 4, 6, and 8. Thus the condition for an n-cycle to emerge is that all 
the eigenvalues of D(i  f~) = (DT)" at the "critical" fixed point coincide, i.e., 

(2+)n = (e_+io), = 1 = 2~ (5.16) 

at K-- K ("). 
We conjecture then that, for any integer n/> 3, the "citical" fixed point 

of T emits an n-cycle of the mapping at the characteristic temperature 

2~ 
K (n) = 3 + 2 cos - -  (5.17) 

n 
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Fig. 3 Iterates of the map (5.21). (a) flJ=0.28, asymptotic densities of the kink solution 
p+=0.771 and p =0.229; (b)flJ=0.4, p+=0.945, p_=0.055; (c) f lJ= 0.6, p+=0.991, 
p_ = 0.0O9. 
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Fig. 4. Stable and metastable configurations of the eight-column system. The left (right) 
hand graph shows their energies (free energies) as a function of the temperature. 
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As n-o oo, K (~) tends to K c = 5  as 1In 2. The density configuration 
corresponding to the n-cycle consists of a sequence of kinks and antikinks, 
similar to the structure in (5.12), and its amplitude v = IPj-Pol  vanishes at 
K (n) as 

v2ocK(m-  K (5.18) 

For n = 2, (5.17) yields K(2)= 1, i.e., T(2)= 0, implying that a staggered den- 
sity configuration does not exist at finite temperatures. 

Until now nothing has been said about the dynamical stability of the 
modulated density configurations emerging below Tc in our model, let 
alone about their statistical weight in the limit N ~ ~ ,  which is crucial for 
the construction of a proper phase diagram. The local stability analysis can 
be carried out explicitly in the case of the 3- and 4-cycles given by (5.12) 
and (5.13). One finds that the corresponding states are stable below a cer- 
tain temperature Ks(n) < K ("), which is determined by the intersection of the 
density v(")(K) of the n-periodic configuration and the spinodal, i.e., by the 
condition 

v(n)(K~ ~)) = vs(K~ ")) (n = 3, 4) (5.19) 

where 

K K 
v~(K) = K --~----  (5.20) 

5 K -  1 

is the spinodal in present units. 
According to the general connection between the dynamical stability 

and the stability with respect to T, the loss of dynamical stability at K~ n) 
should be accompanied by a change in the stability character of the 
corresponding n-cycle. Indeed, the n = 3 and n = 4 cycles are ellitic fixed 
points of ~ above K~ n) and transform into the hyperbolic ones at K~ n). 

For the modulated density configurations with larger periods the 
stability condition cannot be given such a simple form as (5.19). It appears, 
however, that the region of local stability for these states in general will be 
restricted to the metastable part of the phase diagram, i.e., the part between 
the phase coexistence curve and the spinodal. This leads to the low-tem- 
perature "phase" diagram shown in Fig. 2. 

5.4. A Related Hami l tonian System 

Most of the structure of the discrete map (5.6) described so far is also 
found in the phase portrait of a two-dimensional, Hamiltonian dynamical 
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system, which can be derived from the equilibrium model (4.6). Since the 
current Jj(p) in this case is explicitly given in the form (4.4) with some 
ositive Onsager coefficient L j, the condition of zero current may be 
replaced by the much simpler stationary condition (4.5). Together with the 
free energy functional (4.7) this yields 

l PJ - 4pj +/~ (5.21) Pj + 1 - 2pj + &_ 1 = ~ In 1 - pj 

where the "chemical potential" fi controls the mean density p of the system; 
p =�89 corresponds to /~=2. The recursion relation (5.21) defines a two- 
dimensional discrete dynamical system on the phase space [0, 1] 2 with 
volume-preserving dynamics. It has been studied in great detail by Pandit 
and WortisJ TM We want to think of the mapping (5.21) as arising from the 
full three-diensional system (4.8) with (d/dt)&(t)=O through the 
appropriate restriction of the phase space which explicitly takes into 
account the conservation law. The third dimension would thus enter in 
(5.21) through the parameter ft. Although we do not know how to perform 
this restriction for (5.6), the hase portrait of (5.21) will still be useful as an 
illustration to some features of our model. In the following, we give a brief 
descrition of the phase portrait. We consider the case p = �89 (fi = 2) only. 

Instead of a line of fixed points, the map (5.21) has a single hyperbolic 
fixed point above To. At the critical temperature/~cJ= �88 it bifurcates into 
one elliptic and two additional hyperbolic fixed points, which correspond 
to the thermodynamically stable phases of high and low density, respec- 
tively. Below T~, the elliptic fixed point emits n-cycles of arbitrarily high 
periods n. These appear at characteristic temperatures T (~), which can be 
obtained from the eigenvalues of the elliptic fixed point by (5.15). As above, 
we find T(2)= 0. At fiJ= �89 an elliptic 4-cycle analogous to (5.12) appears. 
Its density is given by 

2p - 1 = tanh { 2flJ(Zp - l ) } (5.22) 

When this line in the p-T diagram intersects the spinodal 

1 
(2ps -  1)2= 1 - - -  (5.23) 

4flJ 

approximately at flJ= 0.68, the 4-cycle changes into the hyperbolic kind. A 
phase portrait containing the ellitic 4-cycle is shown in Fig. 3c. 

In the phase portrait of (5.21) the kink solution corresponds to a tra- 
jectory connecting the unstable manifold of one hyperbolic fixed point with 
the stable manifold of the other. Close to T~, when the correlation length is 
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large compared to the lattice spacing (4 >> 1), the discrete dynamical system 
(5.21) is well approximated by its continuous counterpart 

d 2 P - + l n ( l  2 (5.24) 

This system is integrable, and the unstable manifold of one hyperbolic fixed 
point coincides with the stable manifold of the other. ~ Thus the phase 
portrait of (5.21) close to T~ is that of a slightly perturbed integrable 
Hamiltonian system (Fig. 3a). Most  of the phase space between the hyper- 
bolic fixed points is filled with smooth ellitic orbits (KAM trajectories) 
which are stable against small perturbations. As the temperature is lowered 
and the discrete character of the dynamical system (5.21) becomes 
dominant (4 = 1), more and more of the KAM trajectories are destroyed. 
The hyperbolic fixed points are now embedded in a growing region of 
unstable, chaotic trajectories which separates them from the elliptic orbits 
(Fig. 3b). Finally at T =  T (2) = 0 the elliptic fixed point turns hyperbolic 
with reflection (2+ = 4_ = - 1 )  and no ellitic orbits remain. 

5.5. Kink Solut ion 

As already promised, our second topic is the construction of the kink 
solution. This is done numerically. As initial condition for the iteration of 
(5.6) we choose (fl 1, e - l ,  c~, fl) with the four points related through (5.5). 
Such an interface position is expected to yield an optimal kink profile. (18~ 
The initial condition is characterized by a single parameter 6, which deter- 
mines the interracial steepness. For a fixed temperature T <  Tc we then per- 
form subsequent iterations with increasing 6. When 6 is small, the trajec- 
tories oscillate with a given period. The period of oscillation increases with 
6. At a certain critical value 6c the iteration leaves the physical domain. 
Just below 6c, however, we generate in this way configurations where the 
density remains practically constant over up to several hundred lattice 
spacings which presumably represents a close approximation to the true 
kink solution. 

As listed in Table II the maximal densities of these kinklike con- 
figurations lie on the phase coexistence curve of Sec. 4 for 
(Ko-K)/K~ <~ 10 1. At lower temperatures there are deviations, and the 
method seems to fall completely for (Ko- K)/Kc >~ 0.5. The reason for this 
is most clearly illustrated by the phase portrait of the two-dimensional 
dynamical system (5.21) (Fig. 3). In the vicinity of the critical point, where 
the mapping is nearly integrable, the kink trajectory may be approximated 
by numerically stable KAM trajectories to a very high accuracy (Fig. 3a). 
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At lower temperatures the kink trajectory is embedded in a chaotic region 
and therefore quite impossible to locate numerically (Fig. 3b). In the con- 
text of the two-dimensional mapping our method consists of scanning the 
phase space with initial conditions chosen along the line {x + y = 1 }. Since 
we start at the elliptic fixed point (6 = 0) and move outward, the procedure 
terminates at the last KAM trajectory it encounters (6 = 6c) and therefore 
never reaches the hyperbolic fixed points. Unlike the two-dimensional case, 
the full three-dimensional mapping (5.6) offers no possibility to determine 
the asymptotic densities of the kink without locating the corresponding tra- 
jectory. We expect nevertheless that the agreement between the kink 
solution and the phase coexistence curve holds also at low temperatures. 

The width of the kink profile diverges as ( K c - K ) / K ~ )  -1/2 for K--* K~, 
as can be seen from the last column of Table III. This is identical to the 
behavior of the tanh profile (4.20) arising from the continuum Cahn-  
Hilliard theory. 

5.6. A p p r o x i m a t e  F r e i d l i n - W e n t z e l I - T h e o r y  

Finally we investigate the approximate low-temperature dynamics, 
K < K c = 3 + x f 2 ,  of an 8-column system with periodic boundary con- 
ditions for large N. The density is fixed at �89 There are two stable con- 
figurations, one with period 8, denoted by Pl, corresponding to the kink, 
and one with period 4, denoted by P2. It turns out to be useful to include 
also the three unstable stationary configurations. These are of period 8 
(P3), of period 4 (P4), and homogeneous (95). The period 4 configurations 
exist only for K <  K~4)= 3, and P2 becomes stable at K =  2.4 [cf. (5.19)]. 

The "quasi-potential" Va of (5.1) is the solution of the variational 
problem 

V0- = inf S(~(t),~(t))dtl~(O)=pi,~(T)=o~, r (5.25) 

i, j = 1 ..... 5. The action S is computable from the master equation (2.7). (26~ 
The variation is over all paths starting at Pi and ending at pj after an 
arbitrary passage time T. V,j is computed under drastic simplifications. (22) 
For the action only the first and the second jump moments and not the full 
jump distribution are used. The paths are taken to be straight lines. Since 
unstable stationary configurations, i.e., saddle points are included, we hope 
this to be not too bad an approximation. The only variational parameter 
left is the passage time from Pi to pj. From this approximate V o. we deter- 
mine the stationary weights of Pl,..., P5 as the stationary solution of the 
master equation with rates (5.1). 
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We plot in Fig. 4 the "free energies" f(l) of (5.2), obtained by this 
procedure, as a function of temperature. We choose the normalization 
f ( 1 ) = 0 .  As expected, the kink solution Pl carries most of the statistical 
weight. At low temperatures entropy effects should be small. Therefore we 
compare the free energies with the energies /?(U(pi)- U(pl)), where U is 
computed as the average of H in (2.1). Remarkably enough, there is good 
qualitative agreement between energies and free energies. 

Since the qualitative picture is rather insensitive to the details of the 
calculational procedure, we believe it to be generally correct in spite of the 
drastic approximations involved. Thus we conclude that the periodically 
modulated states obtained as cycles of the discrete dynamics (5.6) are 
merely metastable in the thermodynamic sense. As in equilibrium, the 
globally stable low-temperature state of the system is given by the kink 
profile. 
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